
AEC, Dept. of IT Page 25

UNIT - II

AEC, Dept. of IT Page 26

UNIT - II

TOPDOWN PARSING

1. Context-free Grammars: Definition:

Formally, a context-free grammar G is a 4-tuple G = (V, T, P, S), where:
1. V is a finite set of variables (or nonterminals). These describe sets strings.
2. T is a finite set of terminals (i.e., tokens).
3. P is a finite set of productions, each of the form

A

where A V is a variable, and (V T)* is a sequence of terminals and nonterminals. S V
is the start symbol.

Example of CFG:

E ==>EAE | (E) | -E | id A==> + | - | * | / |

Where E, A are the non-terminals while id, +, *, -, /,(,) are the terminals. 2. Syntax analysis:

In syntax analysis phase the source program is analyzed to check whether if conforms to the source
 syntax, and to determine its phase structure. This phase is often separated into two phases:

 Lexical analysis: which produces a stream of tokens?

 Parser: which determines the phrase structure of the program based on the context-free
grammar for the language?

2.1 PARSING:

Parsing is the activity of checking whether a string of symbols is in the language of some grammar,
where this string is usually the stream of tokens produced by the lexical analyzer. If the string is in
the grammar, we want a parse tree, and if it is not, we hope for some kind of error message
explaining why not.

There are two main kinds of parsers in use, named for the way they build the parse trees:

 Top-down: A top-down parser attempts to construct a tree from the root, applying
productions forward to expand non-terminals into strings of symbols.

 Bottom-up: A Bottom-up parser builds the tree starting with the leaves, using productions
in reverse to identify strings of symbols that can be grouped together.

AEC, Dept. of IT Page 27

 P ars er

Sy mb o l
T a b le

Re s t o
fro nt e n

L e xic a l
A n a ly z e

In both cases the construction of derivation is directed by scanning the input sequence from left to
right, one symbol at a time.

Parse Tree:

A parse tree is the graphical representation of the structure of a sentence according to its grammar.

Example:
Let the production P is:

E T | E+T
T F | T*F
F V | (E)
V a | b | c |d

The parse tree may be viewed as a representation for a derivation that filters out the choice regarding
the order of replacement.

Parse tree for a * b + c

E T

T+ F F

F V V

V b c

a

AEC, Dept. of IT Page 28

Parse tree for a + b * c is:

E

E + T

T T * F

F

F V

V V c

a b

Parse tree for (a * b) * (c + d)

E

E T

T F

F V

c
V b
a

2.2 SYNTAX TREES:

Parse tree can be presented in a simplified form with only the relevant structure information by:

 Leaving out chains of derivations (whose sole purpose is to give operators difference

precedence).

 E

T

T

*

F

F (E

(E T

 T F

 F V

 V d

AEC, Dept. of IT Page 29

 Labeling the nodes with the operators in question rather than a non-terminal.

The simplified Parse tree is sometimes called as structural tree or syntax tree.

a * b + c

a +

(a + b) * (c + d)

E E

 +
 +

 a (E (E)
* c

a b
b c

 a b d

 Synt a x T re e s

Syntax Error Handling:

If a compiler had to process only correct programs, its design & implementation would be greatly
simplified. But programmers frequently write incorrect programs, and a good compiler should assist
the programmer in identifying and locating errors.The programs contain errors at many different
levels.
For example, errors can be:

1) Lexical such as misspelling an identifier, keyword or operator
2) Syntactic such as an arithmetic expression with un-balanced parentheses.
3) Semantic such as an operator applied to an incompatible operand.
4) Logical such as an infinitely recursive call.

Much of error detection and recovery in a compiler is centered around the syntax analysis phase. The
goals of error handler in a parser are:

 It should report the presence of errors clearly and accurately.
 It should recover from each error quickly enough to be able to detect subsequent errors.
 It should not significantly slow down the processing of correct programs.

2.3Ambiguity:

Several derivations will generate the same sentence, perhaps by applying the same productions in a
different order. This alone is fine, but a problem arises if the same sentence has two distinct parse
trees. A grammar is ambiguous if there is any sentence with more than one parse tree.

Any parses for an ambiguous grammar has to choose somehow which tree to return. There are
a number of solutions to this; the parser could pick one arbitrarily, or we can provide

AEC, Dept. of IT Page 30

some hints about which to choose. Best of all is to rewrite the grammar so that it is not ambiguous.
There is no general method for removing ambiguity. Ambiguity is acceptable in spoken

languages. Ambiguous programming languages are useless unless the ambiguity can be resolved.

Fixing some simple ambiguities in a grammar:
 Ambiguous language unambiguous

(i) A B | AA Lists of one A BC
 C A | E

(ii) A B | A;A Lists of one or punctuation A BC
 C ;A | E

(iii) A B | AA | E lists of zero or more A BA | E

Any sentence with more than two variables, such as (arg, arg, arg) will have multiple parse trees.

2.4 Left Recursion:

If there is any non terminal A, such that there is a derivation A the A for some string , then
grammar is left recursive.

Algorithm for eliminating left Recursion:

1. Group all the A productions together like this: A A 1 | A 2 | - - - | A m | 1 | 2 | - -

- | n

Where,
A is the left recursive non-terminal,

 is any string of terminals and
 is any string of terminals and non terminals that does not begin with A.

2. Replace the above A productions by the following: A 1 AI | 2 AI | - - - | n AI

AI 1 AI | 2 AI | - - - | m AI | Where, AI is a new non terminal.

Top down parsers cannot handle left recursive grammars.

AEC, Dept. of IT Page 31

If our expression grammar is left recursive:

 This can lead to non termination in a top-down parser.
 for a top-down parser, any recursion must be right recursion.
 we would like to convert the left recursion to right recursion.

Example 1:
Remove the left recursion from the production: A A |

Left Recursive.
Eliminate

Applying the transformation yields:

A AI

AI AI |

Remaining part after A.

Example 2:
Remove the left recursion from the productions:

E E + T | T

T T * F | F
Applying the transformation yields:

E T EI T F TI

EI T EI | TI * F TI |
Example 3:
Remove the left recursion from the productions:

E E + T | E T | T
T T * F | T/F | F

Applying the transformation yields:

E T EI T F TI

E + T EI | - T EI | TI * F TI | /F TI |
Example 4:
Remove the left recursion from the productions:

S A a | b
A A c | S d |

1. The non terminal S is left recursive because S A a S d a But
it is not immediate left recursive.

2. Substitute S-productions in A S d to obtain:
A A c | A a d | b d |

3. Eliminating the immediate left recursion:

AEC, Dept. of IT Page 32

Example 5:

S A a | b
A b d AI | AI

AI c AI | a d AI |

Consider the following grammar and eliminate left recursion. S A a | b
A S c | d

The nonterminal S is left recursive in two steps: S A a S c a A a c a S c a c a - - -
Left recursion causes the parser to loop like this, so remove: Replace A S c | d by A A a c | b c |
d

and then by using Transformation rules: A b c AI | d AI

AI a c AI |

2.5 Left Factoring:
Left factoring is a grammar transformation that is useful for producing a grammar suitable for
predictive parsing.
When it is not clear which of two alternative productions to use to expand a non-terminal A, we may
be able to rewrite the productions to defer the decision until we have some enough of the input to
make the right choice.

Algorithm:
For all A non-terminal, find the longest prefix that occurs in two or more right-hand sides of A.

If then replace all of the A productions, A I | 2 | - - - | n | r
With

A AI | r
AI I | 2| - - - | n |

Where, AI is a new element of non-terminal. Repeat until no common prefixes remain.
It is easy to remove common prefixes by left factoring, creating new non-terminal.
For example consider:

V | r Change to:

V VI VI | r

Example 1:
Eliminate Left factoring in the grammar: S V := int

V | alpha

AEC, Dept. of IT Page 33

Becomes:
S V := int
V alpha VI

VI |

2.6 TOP DOWN PARSING:

Top down parsing is the construction of a Parse tree by
derivation until we reach a string that matches input. That is, construct tree from root to leaves.
The advantage of top down parsing in that a parser can directly be written as a program. Table-driven
top-down parsers are of minor practical relevance. Since bottom-up parsers are more powerful than
top-down parsers, bottom-up parsing is practically relevant.
For example, let us consider the grammar to see how top-down parser works:

S if E then S else S | while E do S | print
E true | False | id

The input token string is: If id then while true do print else print.
1. Tree:

S

Input: if id then while true do print else print.
Action: Guess for S.
2. Tree:

S

if E t h e n S e ls e S

Input: if id then while true do print else print.
Action: if matches; guess for E.
3. Tree:

S

if E t h e n S e ls e S

id

Input: id then while true do print else print.
Action: id matches; then matches; guess for S.

AEC, Dept. of IT Page 34

4. Tree:

 S

if

t h e n

S

e ls

S

 w h ile E d o S

Input: while true do print else print.
Action: while matches; guess for E.
5. Tree:

 S

if

t h e

S

e ls

S

 w h i Ed o S

 t ru e

Input: true do print else print
Action:true matches; do matches; guess S.

6. Tree:

 S

if

t h e

S

e ls e

S

 w h i Ed o S

 t ru e print

Input: print else print.
Action: print matches; else matches; guess for S.

AEC, Dept. of IT Page 35

7. Tree:

 S

if

t h e

S

e ls

S

 w h i Ed o S pri

 t ru e prin

Input: print.
Action: print matches; input exhausted; done.

2.6.1. Recursive Descent Parsing:

Top-down parsing can be viewed as an attempt to find a left most derivation for an input string.

Equivalently, it can be viewd as a attempt to construct a parse tree for the input starting from the root
and creating the nodes of the parse tree in preorder.

The special case of recursive decent parsing, called predictive parsing, where no backtracking
is required. The general form of top-down parsing, called recursive descent, that may involve
backtracking, that is, making repeated scans of the input.

Recursive descent or predictive parsing works only on grammars where the first terminal
symbol of each sub expression provides enough information to choose which production to use.

Recursive descent parser is a top down parser involving backtracking. It makes a repeated
scans of the input. Backtracking parsers are not seen frequently, as backtracking is very needed to
parse programming language constructs.

Example: consider the grammar

And the input string w=cad. To construct a parse tree for this string top-down, we initially create a tree
consisting of a single node labeled scan input pointer points to c, the first symbol of w. we then use the
first production for S to expand tree and obtain the tree of Fig(a).

a

 S S

c d c A d c A d

 a b

Fi

Fig(b)

Fig(c

)

AEC, Dept. of IT Page 36

The left most leaf, labeled c, matches the first symbol of w, so we now advance the input
pointer to a ,the second symbol of w, and consider the next leaf, labeled A. We can then expand A
using the first alternative for A to obtain the tree in Fig (b). we now have a match for the second
input symbol so we advance the input pointer to d, the third, input symbol, and compare d against the
next leaf, labeled b. since b does not match the d ,we report failure and go back to A to see where
there is any alternative for Ac that we have not tried but that might produce a match.

In going back to A, we must reset the input pointer to position2,we now try second alternative

for A to obtain the tree of Fig(c).The leaf matches second symbol of w and the leaf d matches the
third symbol .

The left recursive grammar can cause a recursive- descent parser, even one with backtracking,
to go into an infinite loop.That is ,when we try to expand A, we may eventually find ourselves again
trying to ecpand A without Having consumed any input.

2.6.2. Predictive Parsing:

Predictive parsing is top-down parsing without backtracking or look a head. For many
languages, make perfect guesses (avoid backtracking) by using 1-symbol look-a-head. i.e., if:
A I | 2 | - - - | n.
Choose correct i by looking at first symbol it derive. If is an alternative, choose it last.

This approach is also called as predictive parsing. There must be at most one production in
order to avoid backtracking. If there is no such production then no parse tree exists and an error is
returned.

The crucial property is that, the grammar must not be left-recursive.
Predictive parsing works well on those fragments of programming languages in which keywords
occurs frequently.
For example:

stmt if exp then stmt else stmt | while expr do stmt
| begin stmt-list end.

then the keywords if, while and begin tell, which alternative is the only one that could possibly
succeed if we are to find a statement.
The model of predictive parser is as follows:

AEC, Dept. of IT Page 37

A predictive parser has:

Stack
Input
Parsing Table
Output

The input buffer consists the string to be parsed, followed by $, a symbol used as a right end
marker to indicate the end of the input string.
The stack consists of a sequence of grammar symbols with $ on the bottom, indicating the bottom of
the stack. Initially the stack consists of the start symbol of the grammar on the top of $.
Recursive descent and LL parsers are often called predictive parsers, because they operate by
predicting the next step in a derivation.

The algorithm for the Predictive Parser Program is as follows: Input: A string w and a parsing
table M for grammar G
Output: if w is in L(g),a leftmost derivation of w; otherwise, an error indication.

Method: Initially, the parser has $S on the stack with S, the start symbol of G on top, and w$ in the
input buffer. The program that utilizes the predictive parsing table M to produce a parse for the input
is:

Set ip to point to the first symbol of w$; repeat

let x be the top stack symbol and a the symbol pointed to by ip; if X is a terminal or $
then

if X = a then

pop X from the stack and advance ip else error()
else /* X is a non-terminal */

if M[X, a] = X Y1 Y2..................... Yk then begin

AEC, Dept. of IT Page 38

pop X from the stack;
push Yk, Yk-1, Y1 onto the stack, with Y1 on top; output the

end
production X Y1 Y2 Yk

else error()
until X = $ /*stack is empty*/

2.6.3 FIRST and FOLLOW:

The construction of a predictive parser is aided by two functions with a grammar G. these
functions, FIRST and FOLLOW, allow us to fill in the entries of a predictive parsing table for G,
whenever possible. Sets of tokens yielded by the FOLLOW function can also be used as
synchronizing tokens during pannic-mode error recovery.

strings in

Define FOLLOW (A), for nonterminals A, to be the set of terminals a that can appear

immediately to the right of A in some sentential form, that is, the set of terminals a such that there

sentential form, then $ is in FOLLOW(A).

Computation of FIRST ():
To compute FIRST(X) for all grammar symbols X, apply the following rules until no more

terminals added to any FIRST set.
 If X is terminal, then FIRST(X) is {X}.
 If is production, then add to FIRST(X).

 If X is nonterminal and 1 Y2 k is a production, then place a in
FIRST(X) if for some i,a is in FIRST(Yi),and is in all of FIRST(Yi),and is in
all of FIRST(Y1 FIRST(Yi-1);that is Y1.................... Yi- in
FIRST(Yj FIRST(X).for example, everything
in FIRST(Y1) is surely in FIRST(X).if Y1
more to FIRST(X),but if Y1 add FIRST(Y2) and so on.

FIRST (A) = FIRST (I) U FIRST (2) U - - - U FIRST (n) Where, A 1 | 2 | ----- | n, are all the productions
for A. FIRST (A) = if FIRST (A) then FIRST (A)
else (FIRST (A) - { }) U FIRST ()

AEC, Dept. of IT Page 39

Computation of FOLLOW ():

To compute FOLLOW (A) for all nonterminals A, apply the following rules until nothing can be
added to any FOLLOW set.

 Place $ in FOLLOW(s), where S is the start symbol and $ is input right end marker .

FOLLOW(B).

 If there is production or a production where FIRST contains
 everything in FOLLOW(A)is in FOLLOW(B).

Example:
Construct the FIRST and FOLLOW for the grammar:

A BC | EFGH | H
B b
C c |
E e |
F CE
G g
H h |

Solution:
1. Finding first () set:

1. first (H) = first (h) first () = {h, }

2. first (G) = first (g) = {g}

3. first (C) = first (c) first () = c, }

4. first (E) = first (e) first () = {e, }

5. first (F) = first (CE) = (first (c) - { }) first (E)

= (c, } { }) {e, } = {c, e, }

6. first (B) = first (b)={b}

7. first (A) = first (BC) first (EFGH) first (H)

= first (B) (first (E) { }) first (FGH) {h, }

= {b, h, } {e} (first (F) { }) first (GH)

= {b, e, h, } {C, e} first (G)

= {b, c, e, h, } {g} = {b, c, e, g, h, }

AEC, Dept. of IT Page 40

2. Finding follow() sets:

1. follow(A) = {$}

2. follow(B) = first(C) { } follow(A) = {C, $}

3. follow(G) = first(H) { } follow(A)

={h, } { } {$} = {h, $}

4. follow(H) = follow(A) = {$}

5. follow(F) = first(GH) { } = {g}

6. follow(E) = first(FGH) m- { } follow(F)

= ((first(F) { }) first(GH)) { } follow(F)

= {c, e} {g} {g} = {c, e, g}

7. follow(C) = follow(A) first (E) { } follow (F)

={$} {e, } {g} = {e, g, $}

Example 1:

Construct a predictive parsing table for the given grammar or Check whether the given grammar is
LL(1) or not.

E E + T | T
T T * F | F F (E) | id

Step 1:
Suppose if the given grammar is left Recursive then convert the given grammar (and) into non-left
Recursive grammar (as it goes to infinite loop).
E T EI

EI + T EI | TI F TI

TI * F TI | F (E) | id

Step 2:
Find the FIRST(X) and FOLLOW(X) for all the variables.

The variables are: {E, EI, T, TI, F}
Terminals are: {+, *, (,), id} and $

Computation of FIRST() sets:

AEC, Dept. of IT Page 41

FIRST (F) = FIRST ((E)) U FIRST (id) = {(, id}
FIRST (TI) = FIRST (*FTI) U FIRST () = {*, }
FIRST (T) = FIRST (FTI) = FIRST (F) = {(, id}
FIRST (EI) = FIRST (+TEI) U FIRST () = {+, }
FIRST (E) = FIRST (TEI) = FIRST (T) = {(, id}
Computation of FOLLOW () sets:

Relevant production

FOLLOW (E) = {$} U FIRST ()) = {$,)} F (E)

FOLLOW (EI) = FOLLOW (E) = {$,)} E TEI

FOLLOW (T) = (FIRST (EI) - { }) U FOLLOW (E) U FOLLOW (EI) E TEI

= {+, EI +TEI

FOLLOW (TI) = FOLLOW (T) = {+,), $} T FTI

FOLLOW (F) = (FIRST (TI) - { }) U FOLLOW (T) U FOLLOW (TI) T TI
= {*, +,

Step 3:
Construction of parsing table:

Termina

+

(

)

id

$
Variables

E

E TE

E TEI

EI
EI

EI

E I +TEI

T

T FT

T FTI

TI TI TI *F

TI

TI

F F (E) F id

Table 3.1. Parsing Table

Fill the table with the production on the basis of the FIRST(). If the input symbol is an in FIRST(), then goto
FOLLOW() and fill , in all those input symbols.

3.1. Let us start with the non-terminal E, FIRST(E) = {(, id}. So, place the production E TEI at (and id.

3.2. For the non-terminal EI, FIRST (EI) = {+, }.

So, place the production EI +TEI at + and also as there is a in FIRST(EI), see
FOLLOW(EI) = {$,)}. So write the production EI at the place $ and).

AEC, Dept. of IT Page 42

Similarly:

3.3. For the non-terminal T, FIRST(T) = {(, id}. So place the production T FTI at (and id.

3.4. For the non-terminal TI, FIRST (TI) = {*, }

So place the production TI *FTI at * and also as there is a in FIRST (TI), see

FOLLOW (TI) = {+, $,)}, so write the production TI at +, $ and).

3.5. For the non-terminal F, FIRST (F) = {(, id}.
So place the production F id at id location and F (E) at (as it has two productions.

3.6. Finally, make all undefined entries as error.
As these were no multiple entries in the table, hence the given grammar is LL(1).

Step 4:
Moves made by predictive parser on the input id + id * id is:

STACK INPUT REMARKS

$ E

id + id * id $

E and id are not identical; so see E on id in parse table, the
production is E TEI; pop E, push EI and T i.e., move in
reverse order.

$ EI T id + id * id $
See T on id the production is T F TI ;
Pop T, push TI and F; Proceed until both are identical.

$ EI TI F id + id * id $ F id

$ EI TI id id + id * id $ Identical; pop id and remove id from input symbol.

$ EI TI
 + id * See TI on +; TI so, pop TI

$ EI
 + id * See EI on +; EI +T EI; push EI , + and T

$ EI T + + id * Identical; pop + and remove + from input symbol.

$ EI T id *

$ EI TI F id * T F TI

$ EI TI id id * F id

$ EI TI
 *

$ EI TI F * * TI * F TI

$ EI TI F

$ EI TI id

F id

AEC, Dept. of IT Page 43

$ EI TI

TI

$ EI

EI

$ Accept.

Table 3.2 Moves made by the parser on input id + id * id

Predictive parser accepts the given input string. We can notice that $ in input and stuck, i.e., both are
empty, hence accepted.

2.6.3 LL (1) Grammar:

-to- -

for token of look
No LL (1) grammar can be ambiguous or left recursive.

If there were no multiple entries in the Recursive decent parser table, the given grammar is LL (1).

If the grammar G is ambiguous, left recursive then the recursive decent table will have atleast one
multiply defined entry.

The weakness of LL(1) (Top-down, predictive) parsing is that, must predict which production to use.

Error Recovery in Predictive Parser:

Error recovery is based on the idea of skipping symbols on the input until a token in a
selected set of synchronizing tokens appear. Its effectiveness depends on the choice of synchronizing
set. The Usage of FOLLOW and FIRST symbols as synchronizing tokens works reasonably well
when expressions are parsed.

For the constructed table., fill with synch for rest of the input symbols of FOLLOW set and then fill
the rest of the columns with error term.

Terminal

+

*

(

)

id

$
Variables

E error error E TE synch E TEI synch

EI
EI

error error EI error E I +TEI

T synch error T FT synch T FTI synch

TI TI TI *F error TI error TI

F synch synch F (E) synch F id synch

Table3.3 :Synchronizing tokens added to parsing table for table 3.1.

AEC, Dept. of IT Page 44

If the parser looks up entry in the table as synch, then the non terminal on top of the stack is popped
in an attempt to resume parsing. If the token on top of the stack does not match the input symbol,
then pop the token from the stack.

The moves of a parser and error recovery on the erroneous input) id*+id is as follows:

STACK IN REMARKS

$ E) id * + Error, skip)

$ E id * +

$ EI T id * +

$ EI TI F id * +

$ EI TI id id * +

$ EI TI
 * +

$ EI TI F * * +

$ EI TI F + Error; F on + is synch; F has been popped.

$ EI TI
 +

$ EI
 +

$ EI T + +

$ EI T

$ EI TI F

$ EI TI id

$ EI TI

$ EI

$ Accept.

Example 2:
Table 3.4. Parsing and error recovery moves made by predictive parser

Construct a predictive parsing table for the given grammar or Check whether the given grammar is
LL(1) or not.

S iEtSSI | a

SI eS |
E b

AEC, Dept. of IT Page 45

Solution:
1. Computation of First () set:

1. First (E) = first (b) = {b}

2. First (SI) = first (eS) first () = {e, }

3. first (S) = first (iEtSSI) first (a) = {i, a}

2. Computation of follow() set:

1. follow (S) = {$} first (SI) { } follow (S) follow (SI)

= {$} {e} = {e, $}

2. follow (SI) = follow (S) = {e, $}

3. follow (E) = first (tSSI) = {t}

3. The parsing table for this grammar is:

 a b e i t

S S a

E b

 S
SI SI SI

iEtSSI

E

SI e

As the table multiply defined entry. The given grammar is not LL(1).

Example 3:

Construct the FIRST and FOLLOW and predictive parse table for the grammar:

S AC$
C c |
A aBCd | BQ |
B bB | d
Q q

Solution:

1. Finding the first () sets: First (Q) = {q}

First (B) = {b, d}

AEC, Dept. of IT Page 46

First (C) = {c, }

First (A) = First (aBCd) First (BQ) First ()

= {a} First (B) First (d) { }

= {a} First (bB) First (d) { }

= {a} {b} {d} { }

= {a, b, d, } First (S) = First (AC$)

= (First (A) { }) (First (C) { }) First ()

= ({a, b, d, } { }) ({c, } { }) { }

= {a, b, d, c, }

2. Finding Follow () sets: Follow (S) = {#}

Follow (A) = (First (C) { }) First ($) = ({c, } { }) {$} Follow (A) = {c, $}

Follow (B) = (First (C) { }) First (d) First (Q)

= {c} {d} {q} = {c, d, q} Follow (C) = (First ($) First (d) = {d, $}

Follow (Q) = (First (A) = {c, $}

3. The parsing table for this grammar is:

 a b c D q $

S S AC$ S AC S AC S AC S AC

$ $ $ $

A A aBCd A BQ A A BQ A

B B bB B d

C C c C C

Q Q q

AEC, Dept. of IT Page 47

4. Moves made by predictive parser on the input abdcdc$ is:

Stack symbol Input Remarks

#S abdcdc$# S AC$

#$CA abdcdc$# A aBCd
#$CdCBa abdcdc$# Pop a

#$CdCB bdcdc$# B bB
#$CdCBb bdcdc$# Pop b

#$CdCB dcdc$# B d

#$CdCd dcdc$# Pop d

#$CdC cdc$# C c
#$Cdc cdc$# Pop C

#$Cd dc$# Pop d

#$C c$# C c
#$c c$# Pop c

#$ $# Pop $

Accepted

